" Welcome to Digital World " E Mail: bhavik.ec07@gmail.com

Sunday 23 October 2016

Basic and Pythagorean Identities
sec(x) = 1/cos(x), csc(x) = 1/sin(x), cot(x) = 1/tan(x) = cos(x)/sin(x), tan(x) = sin(x)/cos(x)
Notice how a "co-(something)" trig ratio is always the reciprocal of some "non-co" ratio. You can use this fact to help you keep straight that cosecant goes with sine and secant goes with cosine.
sin2(t) + cos2(t) = 1       tan2(t) + 1 = sec2(t)       1 + cot2(t) = csc2(t)
The above, because they involve squaring and the number 1, are the "Pythagorean" identities. You can see this clearly if you consider the unit circle, where sin(t) = ycos(t) = x, and the hypotenuse is 1.
sin(–t) = –sin(t)       cos(–t) = cos(t)       tan(–t) = –tan(t)
Notice in particular that sine and tangent are odd functions, while cosine is an even function.
Angle-Sum and -Difference Identities
sin(α + β) = sin(α)cos(β) + cos(α)sin(β) 
sin(α – β) = sin(α)cos(β) – cos(α)sin(β)
 
cos(α + β) = cos(α)cos(β) – sin(α)sin(β)
 
cos(α – β) = cos(α)cos(β) + sin(α)sin(β)
   
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)], tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 
Double-Angle Identities
sin(2x) = 2sin(x)cos(x)
cos(2x) = cos2(x) – sin2(x) = 1 – 2sin2(x) = 2cos2(x) – 1
tan(2x) = [2 tan(x)] / [1 - tan^2(x)]
Half-Angle Identities   Copyright © Elizabeth Stapel 2010-2011 All Rights Reserved
sin(x/2) = +/- sqrt[(1 - cos(x))/2], cos(x/2) = +/- sqrt[(1 + cos(x))/2], tan(x/2) = +/- sqrt[(1 - cos(x))/(1 + cos(x))]
The above identities can be re-stated as:
sin2(x) = ½[1 – cos(2x)]
cos2(x) = ½[1 + cos(2x)]
tan^2(x) = [1 - cos(2x)] / [1 + cos(2x)]
Sum Identities
sin(x)+sin(y)=2sin[(x+y)/2]cos[(x-y)/2], sin(x)-sin(y)=2cos[(x+y)/2]sin[(x-y)/2], cos(x)+cos(y)=2cos[(x+y)/2]cos[(x-y)/2], cos(x)-cos(y)=-2sin[(x+y)/2]sin[(x-y)/2]
Product Identities
sin(x)cos(y)=(1/2)[sin(x+y)+sin(x-y)], cos(x)sin(y)=(1/2)[sin(x+y)-sin(x-y)], cos(x)cos(y)=(1/2)[cos(x-y)+cos(x+y)], sin(x)sin(y)=(1/2)[cos(x-y)-cos(x+y)]